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Abstract

Traffic fatalities accounted for 1.3% of all deaths in the United States in 2017

and the average American lost about 100 hours due to congestion in 2019. One tool

transportation departments (DOTs) use to address these issues is Dynamic Message

Signs (DMS). DMS convey traffic conditions and occasional safety reminders to drivers

in order to increase attentiveness and reduce harmful behavior. This study leverages

variation in the text and formatting of messages displayed by Virginia’s DMS to explain

detailed speed and crash data near DMS. This study reports no significant differences in

crash risk nor speed when DMS display safety messages compared to default messages.

However, this study does uncover large and signficant differences in crash risk and

speed when DMS transition, or cycle, between multiple messages, although the effect

only lasts for 3-5 kilometers. Results indicate that multi-page messages increased

crashes by 1.5% in 2019, and reduced vehicle speed around DMS by 2-4%, relative to

single page messages. Although DMS can provide valuable, actionable information to

drivers, DOTs should be more selective in the timing and formatting of messages as to

not impose additional externalities on drivers.

∗West Virginia University, Department of Economics. Email: ajc0056@mix.wvu.edu.
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1 Introduction

Traffic safety and congestion represent large scale, nationwide transportation issues. Ac-

cording to the United States Department of Transportation’s (USDOT) Fiscal Year Budget

Estimates, government agencies allocated nearly $1 billion to traffic safety measures na-

tionwide in 2021. In 2017, over 37,000 Americans died as a result of traffic crashes, which

accounted for just over 1.3% of all deaths in the United States (Murphy et al., 2018). In

2016 the USDOT estimated the statistical value of a life at $9.6 million, implying an approx-

imate total annual cost of fatal crashes of $380 billion. Put into perspective, this represents

about 2% of 2017 US GDP. Traffic congestion contributes to a host of negative externalities,

including increased travel time and air pollution. For example, Currie and Walker (2011)

demonstrated that reductions in congestion, and thus pollution, generated by replacing stan-

dard toll booths with electronic toll collection led to increased infant birth weight of about

11% in nearby areas. In addition, the average working American lost about 100 hours due

to congestion on their commutes in 2019 (Inrix, 2020).

Unfortunately, many remedies to traffic externalities, such as improving infrastructure

(Bock et al., 2021) or investing in law enforcement (DeAngelo and Hansen, 2014), can be

prohibitively expensive. In addition, government transportation departments (DOTs), the

agencies directly responsible for highways, do not typically have the ability to implement

these types of solutions. Rather, DOTs must wait for legislative bodies to recognize and act

on these infrastructure problems.1 In this context, low cost interventions to reduce traffic

externalities are especially attractive. Dynamic Message Signs (DMS), also called Variable

Message Signs, Changeable Message Signs or Matrix Signs, represent one common action

that many DOTs take. DMS quickly update drivers’ information sets which can reduce

traffic congestion by alerting them to issues on the road ahead.

DMS are large LED signs with the ability to quickly and very inexpensively change

1In 2021, the United States Senate passed a $1 trillion infrastructure bill, $110 billion of which was
budgeted for roads, bridges and other projects. This bill highlights the government’s understanding of the
need for quality transportation infrastructure.
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the messages displayed based on current traffic conditions. DOTs use these signs to notify

drivers of travel time estimates, the presence of congestion, toll prices, and lane impacting

events such as crashes, disabled vehicles, or debris in the road. In addition, many DOTs

use DMS to display safety slogans with the hope of encouraging drivers to engage in safer

behaviors. DMS are popular along highways all over the world and their flexibility provides

an important tool for DOTs.

Although DMS are widespread and generally thought to be effective, their impact is

not yet well established empirically. Providing updated information to drivers during travel

represents an obvious benefit, but there might be unintended consequences from DMS use.

Understanding and documenting any externalities is important for DOTs to make better

decisions about DMS use. Previous research identified that a specific DMS use in Texas,

display of a salient and morbid traffic safety message, increased the risk of crashes near signs

(Hall and Madsen, 2021). This study builds on that paper in several ways. First, this study

investigates the extent to which this result holds for a broader set of traffic safety messages

in a different state. Second, this study offers an alternate explanation for the mechanism

generating changes in crash rates. Finally, this study analyzes the effect of DMS messaging

on vehicle travel speed, which has never been done in a large scale empirical study.

Data for this study come from Virginia’s Department of Transportation (VDOT) and

INRIX, a private company specializing in traffic data collection. Like most DOTs in the

United States, VDOT uses DMS to communicate with drivers in real time. VDOT maintains

detailed minute-by-minute DMS log files that contain information such as location, time of

display, and message content. Crash data come from both Virginia’s Department of Motor

Vehicles and VDOT’s 511 system. Traffic speed data come from INRIX.

This study uses two empirical strategies to identify the impacts of DMS messaging on

traffic outcomes. First, scheduled safety campaigns provide exogenous variation in the in-

tensity of safety messaging. Second, DMS use is identified by the message occurring at the

beginning of the hour. Since DMS are mostly automated, messages are scheduled in advance
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and are only interrupted if a lane impacting event occurs. The message displayed at the

beginning of the hour is therefore intended to persist at least throughout the hour. If an

incident occurs that changes the message displayed, this incident can be attributed to the

message displayed at the beginning of the hour.

The results provide important information about the impact of DMS messages. First,

safety messaging does not appear to impact traffic outcomes differently than other standard

DMS messages. This said, standard DMS messaging generates some negative externalities

in the form of speed reductions and small increases in the probability of a crash. While this

contradicts some results in the traffic safety literature, the second result provides an alternate

explanation these findings. DMS messages that transition between multiple messages, or

contain multiple pages, have a large, significant effect on both speed and crash risk on

highway segments near each DMS. This impact tapers off after 5 kilometers. This result is

strengthened by using alternate incidents (debris in the road, disabled vehicles, etc.) as a

falsification test resulting in a precisely estimated null result for traffic outcomes.

Put into context, multi-page DMS messaging results in an additional 1,875 crashes per

year near DMS, which accounts for about 1.5% of total crashes across the State of Virginia.

Furthermore, since .6% of crashes in Virginia result in a fatality, the results suggest an

additional 12 fatalities per year in the state. Multi-page DMS messaging also results in a

2-4% reduction in vehicle speed. While small, speed reductions add up over many drivers.

For the average commuter in Virginia, a 2-4% slow down in speed would cost $0.40 per trip,

which is about 1/3 of the typical toll charge in Virginia. Over the course of a year, this

could amount to $200 per person, or $700 million across all Virginia commuters, or about

.12% of Virginia’s Gross State Product. These results suggest blank DMS messages should

be used more often, particularly when communicating relatively less valuable information

like a safety slogan or a travel time estimate that indicates no congestion.

The paper proceeds as follows. Section 2 outlines the related literature about traffic

outcomes and messaging. Sections 3 and 4 describe the data and the identification strategies
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used to answer the research questions. Section 5 discusses the empirical results, and Section

6 concludes.

2 Literature Review

A long and substantial literature in economics on highways and traffic outcomes exists.

Vickrey (1969) was one of the first to discuss the underprovision, in terms of both quantity

and quality, of highway infrastructure and its impact on traffic. Since then, many papers

have addressed the externalities associated with traffic. Vehicle crashes and traffic congestion

represent two particularly important externalities. The five and half million crashes reported

in 2010 generated a total economic cost of $277 billion (Blincoe et al., 2015). Distributed

uniformly, this amounts to costs upwards of $900 for each resident in the United States.

The costs of congestion are also well documented in the literature, perhaps even moreso

than crashes. Currie and Walker (2011) showed that replacing toll collection plazas with

E-ZPass plazas increased infant birthweight, an important health outcome, by 11% immedi-

ately near the plazas. Humphreys and Pyun (2018) documented other significant negative

outcomes as a result of increased congestion generated by sporting events. Beland and Brent

(2018) demonstrated a link between the psychological effects of extreme traffic in Los Angeles

and domestic violence.

In addition to important impacts on health and safety, lost time is often cited and easy

to understand cost of congestion. Many states and countries have implemented congestion

pricing along busy roads. Research on congestion pricing typically focuses on drivers’ will-

ingness to pay to avoid it. In theory, this should be proportional to one’s wage. Bento

et al. (2020) point out that this assumption will severely understate an individual’s value of

urgency. Specially, people often face discrete costs of being late, for example being fired. In

this case, congestion pricing becomes a problem involving the expected future value of wages

instead of the current wage.
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Reducing the magnitudes of these externalities is of great interest to society. often times,

governments implement laws to incentivize safer behavior on the road. Cohen and Einav

(2003) and Dee (2009) demonstrated how mandated safety precautions, in the form of seat

belt and motorcycle helmet laws, reduced traffic fatalities. Van Benthem (2015) showed

that increasing speed limits by 10 miles per hour generated a 9-15% increase in crashes.

Alarmingly, this increase in speed limits also resulted in a disproportionate 34-60% increase

in fatalities. In a study evaluating bans on texting and driving, Abouk and Adams (2013)

reported initial reductions in crashes, but then observed rates returning to previous levels

soon after the bans went into effect. The impacts also depended on how strictly the bans

were enforced.

These studies show how traffic outcomes depend on the laws in place. However, in the

context of the standard “Beckerian” model of crime emphasizes the importance of both

sanctions and the probability a sanction occurs. DeAngelo and Hansen (2014) showed how a

large cut to the size of a police force in Oregon, which plausibly affected the probability of a

levied sanction, led to increases in crashes involving both injuries and fatalities on highways.

Importantly, these estimates suggested a single fatality could be prevented by a $309,000

increase in police spending.

The federal and state governments spend billions of dollars on transportation infrastruc-

ture each year. In 2021, the United States Senate passed a $1 trillion infrastructure bill, $110

billion of which was budgeted for roads, bridges and other projects. This bill demonstrates

a broad understanding of the need for quality transportation infrastructure. Winston and

Langer (2006) quantified how much of each dollar spent on highway infrastructure actually

reduced congestion. The main finding amounted to about $0.11 of actual impact for each

dollar spent. A major implication of this result is the need for a change in congestion alle-

viation policies. This result suggests a need for dynamic tolling policies rather than other

approaches. Another possible way to reduce highway congestion is to offer alternate travel

options, such as public transportation. Gu et al. (2021) showed how providing subway lines
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in China increased rush hour speeds by 4% which reflects less highway congestion.

All of these policies, whether investing more in policing, building more subways, or $1

Trillion legislation, are costly. In addition, these policies may entail unintended consequences.

For example, building a new subway is not only costly, but also involves a lot of digging and

soil removal, which could negatively impact air quality as much as the congestion did in the

first place (Humphreys and Ruseski, 2019). Gallagher and Fisher (2020) reported another

example of negative externalities generated by policies designed to reduce traffic congestion.

Gallagher and Fisher (2020) studied the effects of red light cameras on traffic outcomes in

Texas cities and found that removing red light cameras increased the number of “t-bone”

collisions in intersections, but reduced the number of rear end collisions.

In addition to cost, many of policies designed to reduce congestion cannot be implemented

by the government agencies charged with building and maintaining highways, DOTs. DMS

represent one feasible tool for DOTs to affect congestion. Given the extensive use of DMS

around the world, relatively little research documents their effectiveness or considers po-

tential negative externalities. A few early traffic engineering studies showed small speed

reductions from DMS weather advisory messages (Cooper and Sawyer, 1993; Hogema et al.,

1996; Rämä and Kulmala, 2000; Al-Ghamdi, 2007). More recent research showed a similar

effect for DMS congestion messages, but only when the warning was for nearby congestion

(Reinolsmann et al., 2018). Finally, in a driver simulation, Jamson and Merat (2007) showed

no impact of messages on current driving behavior, but drivers were better able to react to

events later in time. he simulation results also showed that drivers became desensitized and

these effects declined with too much exposure.

Besides these studies, most of the literature applicable to DMS comes from research on

billboards and traffic outcomes. While somewhat similar, DMS and billboards have different

functions, and thus may generate different impacts, which makes some billboard research

only partially applicable. Oviedo-Trespalacios et al. (2019), in a summary of the literature

on billboards, found mixed evidence of a relationship between roadside advertising and traffic
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safety. One suggestion made by Oviedo-Trespalacios et al. (2019) is that future research focus

the impact of on multi-page, transitioning advertisements on traffic outcomes like Belyusar

et al. (2016) and Mollu et al. (2018). These two studies showed that message transitions

result in more sideways eye glances and less focus on the road ahead of drivers.

Nearly all of these studies are either relatively small in scale or use driver simulations

instead of data reflecting actual highway conditions. One recent paper, Hall and Madsen

(2021), takes a similar approach to this research. That paper analyzed a specific DMS safety

campaign involving a message used in Texas that disclosed to drivers the total number of

traffic fatalities in the state to date. This specific DMS safety campaign is implemented

in about half of all US states, and might be one that VDOT would endorse based on the

findings in Shealy et al. (2020), a VDOT funded report. The results reported by Hall and

Madsen (2021) suggest an increase in crashes on highway segments located immediately past

DMS in safety campaign weeks compared to the same locations at other times in the same

month. The impact on crashes persisted over time and increased with both the reported

death count and the complexity of the highway segments. The paper proposed cognitive

overload as the mechanism through which DMS messages affect crashes.

Hall and Madsen (2021) rigorously showed some behavioral interventions can be “too

salient” and instead backfire, generating impacts opposite of what was intended. This re-

search raises important questions about how should policy makers should use DMS to get

drivers to practice safer driving habits. Do safety campaign slogans work and is there some

way to structure safety campaign messages to reduce the unintended consequences?

3 Data and Setting

This study draws data from several different sources to create an hour-level panel analysis

data set for a large number of Interstate Highway road segments. Data collected for this

study include Virginia’s linear referencing system (LRS) for road segment and DMS locations,
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detailed minute-by-minute log files for each DMS, crash counts and vehicle speed estimates

from June 2017 until March 2020.

VDOT’s LRS is a GIS tool that allows spatial data to be easily referenced to a linearized

highway representation via mileposts, which identify the distance from the highway’s ori-

gin. Although latitude and longitude permit identification of road segment locations in two

dimensional space, highways can also usefully be identified in one dimension based on mile-

post distance from the origin. Most highways feature physical mileposts which allow first

responders, construction workers, drivers, and others to communicate their current location

or the location of events without GPS coordinates. VDOT’s LRS can be thought of as a

digital, continuous milepost system. Any point with latitude and longitude identifiers can

be spatially matched to an LRS segment and converted to a linear position on a highway.

Each of the data sets analyzed in this study are matched to a specific highway segment using

the LRS.

VDOT maintains over 1,200 individual DMS; substantial heterogeneity exists in their

capabilities and purposes. Many DMS primarily display variable speed limits, travel times to

specific destinations, or lane closures, and only display a handful of characters or symbols at

any time. These DMS are typically small and often built into standard, static highway signs.

Standalone DMS are larger and come in one of two types: stationary or portable. Stationary

DMS are typically attached to overhead structures spanning the highway (a gantry) or to a

pole beside the road (a cantilever). Portable DMS are attached to frames with wheels so they

can be towed to different locations. Portable DMS are usually placed where VDOT plans to

put a stationary DMS in the future, where a stationary DMS is currently malfunctioning, or

where there is active roadwork. Both types of standalone DMS display information in full

phrases instead of a single number or symbol. These are the DMS VDOT uses to inform

drivers.

352 standalone VDOT operated DMS located along an Interstate or US Route existed

at at least one point in time. This includes 218 (62%) stationary and 134 (38%) portable
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DMS. DMS that only serve on/off ramps, arterial or collector roads were not included in the

sample because of their different traffic patterns and locational features.2

These 352 DMS are located at 391 unique locations. The latter is larger than the former

due to some portable DMS being in multiple locations throughout the sample. However,

there are also times when two or more DMS resided next to one another. This occurred

because of two stationary DMS on the same gantry, a portable DMS placed next to a mal-

functioning stationary DMS, or simply two DMS placed a short distance from one another.

In addition, it could also be the case that one DMS was swapped out for another DMS. Fig-

ure 1 displays road segments included in the sample and the locations of the DMS. Note that

the distribution of the driving distance in kilometers between these Virginia DMS locations

has a mean, standard deviation and median comparable to the distribution reported by Hall

and Madsen (2021) in their analysis of data from Texas; 14.17/36.32/4.2 in this study vs

13.96/29.17/6 in Hall and Madsen (2021).

3.1 DMS Messaging

The default display of Virginia DMS is travel time estimates, distances, and toll prices,

especially during peak travel hours. This information allows drivers to make more informed

decisions. According to VDOT policy, default messages must follow a standard, uniform

format. All travel times, distances, and toll prices must update automatically in order

to avoid conveying misinformation. In addition to these defaults messages, VDOT also

considers blank messages to be valid. Blank messages communicate to drivers the idea that

there is no unusual traffic information to be aware of. Blank messages look exactly the

same to drivers as DMS that are turned off due to unreliable power sources (e.g. solar) or

malfunctioning equipment.

An attractive feature of DMS is their ability to alert drivers to upcoming incidents or

congestion and to also offer advice. For instance, in the event of a crash, roadwork, debris

2DMS whose primary function is displaying truck stop or HOV information are also removed due to the
limited variation in their messaging.

10



Figure 1: Map of DMS Locations in Virginia
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or another lane impacting event, DMS operators switch the displayed message to one that

warns drivers of the upcoming delay or obstruction. DMS can also suggest alternate routes

in order to avoid the issue. Lane impacting events are reported to Virginia’s 511 system

and are then confirmed by Virginia’s Traffic Operations Center. Since DMS are connected

to VDOT’s Automated Traffic Monitoring System (ATMS), message updates are triggered

almost immediately. Moreover, most messages are auto-generated from a template and only

require basic information (location, lane, etc.) that is fed in from the ATMS. Lane impacting

items generate messages that take priority over the default message until the lane impacting

item is cleared.

Aside from messages about upcoming traffic conditions, DMS occasionally display safety

messages. Safety messages are general warnings or slogans intended to nudge drivers to

practice safe driving behaviors. “Buckle Up For Safety” and “Click-It or Ticket” repre-

sent two of the most popular safety messages displayed. VDOT plans coordinated safety

campaigns during which DMS operators are encouraged to display specific safety messages.

These campaigns often focus on seat belt usage, distracted driving, speeding, or other dan-

gerous driving habits or activities. During safety campaigns, DMS across Virginia display

safety slogans related to the campaign topic instead of their default messages. Although the

topic of safety slogans can vary, the themes of the messages often relate to holiday themes

or popular culture. The sample contains 24 days of pop culture campaigns (8 total cam-

paigns), 53 days of holiday campaigns (16 total campaigns), along with 93 days of generic

safety campaigns (22 total campaigns). Safety messaging is much more likely to occur during

safety campaigns, though safety slogans are also displayed outside these campaigns. About

10% of observations where a sign exists during a campaign begin the hour with a safety

slogan compared to only about 1% for non-campaign hours. That said, the total hours in

the sample where a safety slogan is displayed is much closer (83,000 in campaign hours vs

63,000 in non-campaign hours).

Figure A.1 depicts VDOT’s safety message campaign schedule during the sample period.
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These campaigns were not planned in reaction to recent traffic conditions, but rather were

planned months in advance. This is an important point, as safety campaigns can be treated

as exogenous to trends in traffic conditions. There are 46 campaigns over the sample period

which take up 170 days in total. These campaigns span between one and seven days with a

mode of three days.3

3.2 Message Text

Data detailing the actual messages for each DMS is taken from SmarterRoads, a VDOT

open data portal. The sample of DMS log files begins at 11:09 am on June 7th 2017 and

continues through present day, though the sample used ends 12:00 am on March 1st 2020.

The temporal frequency of these log files are by minute and include a timestamp, geolocation,

unique identifier and the message’s text in MULTI (Mark-Up Language for Transportation

Information) format.

The MULTI formatting contains information such as the location of line breaks, font,

colors, etc. Most importantly, the format contains information about the number of “pages”

each message contains. Like some billboards, DMS have the ability to alternate, or transition,

between messages in order to display more information at once. In addition to the number of

pages, the length of the message measured by the number of alphanumeric characters. Figure

A.2 depicts the relative frequency of the number of characters of the messages displayed at

the beginning of each hour across locations and the average number of pages for each number

of characters.

The topic of each message is also identified as safety, crash, hazard or other. Hazard

messages are made up of messages warning drivers of disabled vehicles or debris ahead.

Most other messages contained in the “other” group relate to travel time estimates or toll

3The number of days between campaigns is a minimum of 2 days, a maximum of 85 days, and an average
of 17. The weekday with the most campaign days is Friday (31) and the least is Sunday (17). The months
with the most campaign days over the entire sample are December (25) and August (24) and the months
with the least are January, February and May (7).
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prices.4

Quantifying the use of, and messages displayed on, DMS is an important aspect of this

study. Since messages change based on traffic conditions, there is a significant risk of reverse

causality that needs to be avoided. For example, if a crash occurs in the middle on an hour,

DMS operators will change the message to warn drivers of the upcoming obstruction. To

circumvent this, the characteristics of the message displayed at the beginning of the hour are

applied to the entire hour. The assumption being made is that, since messages are almost

always scheduled in advance, messages that are displayed at the beginning of an hour are

intended to span at least that entire hour. Message characteristics will only change in the

middle of an hour if there is an event that forces them to do so. For the sake of transparency,

there is a slight delay in the updating of DMS messages by about 1 to 2 minutes. Figure

A.6 shows the probability of a DMS displaying a safety message, incident message and being

turned on for the 0th, 1st and 2nd minute of each hour of the day. It is clear that there is

a slight lag in the probabilities of displaying a safety message and being turned on from,

say, 10:00 to 10:02. Therefore, what the DMS says two minutes into the hour is used as the

definition of the beginning of the hour’s beginning. Some examples of messages are displayed

in the Appendix.

3.3 Traffic Outcomes

Information about crashes come from two separate data sources. First, Virginia’s De-

partment of Motor Vehicles maintains the official repository of crashes in Virginia. When a

crash occurs, a police officer goes to the scene and fills out a crash report form, called an

FR-300. On this form, the officer records information about the incident, most importantly

the time and location. VDOT preforms quality control on a portion of the crash records

and matches each one to the LRS. These data are a standard source when analyzing crash

outcomes. Unfortunately, given this study’s need for temporal accuracy, there is an impor-

4Future iterations of this study will include a textual tokenization approach to determine words most
associated with crash rates, and latent dirichlet allocation to identify topics.
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tant limitation to note when using the DMV data. Figure 2a displays the distribution of

the timing of crashes within the hour in which they occur. This distribution has a shape

consistent with rounding towards convenient times. For example, the most frequent minutes

a crash occurs is the very first minute and 30th minutes. Again, the most likely explanation

for this distribution is police officers simply rounding off the times of crashes.

A solution to this issue is to obtain records straight from VDOT’s Automated Traffic

Monitoring System (ATMS). Like DMS log files, VDOT maintains minute-by-minute 511

log files. VDOT’s 511 service feeds directly into VDOT’s ATMS, so all relevant incidents

are logged by 511. In addition, each time a DMS operator changes a message due to a lane

impacting event, this is also pushed to the 511 system. In conversations with VDOT em-

ployees, there is no way a sign could be updated before 511, and vice versa. The distribution

of crashes across the minutes of an hour are displayed in Figure 2b. This distribution is

much more uniform than the distribution in Figure 2a. These data represent a substantial

increase in quality due to a higher degree of precision and thus less measurement error.

Besides a more precise measurement of crash times, 511 also has the advantage of record-

ing information on all other lane impacting incidents such as disabled vehicles, fires, debris,

and other incidents. These alternate incidents represent a good falsification for crashes, since

roadside distractions should have relatively little effect on these other items.

Crash data from the DMV and 511 systems, as well as other 511 incidents, are binned

by hour and distance from each DMS. Binning crashes and incidents downstream from DMS

allows for testing the impact of DMS over space. If the mechanism of distracted driving

is impacting drivers, it would follow that the effect would deteriorate with distance from a

DMS. In other words, the effect of a distraction should be largest closest to the distraction,

and shrink towards zero as distance increases.

These bins, in relation to each DMS, are -.2 to 1 km, 1 to 3 km, 3 to 5 km, and 5 to

10 km after DMS. The first bin begins at a negative distance to capture people observing

the DMS as they approach it, but results are not sensitive to this choice. If drivers travel at
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Figure 2: Distribution of Crash Timing According to DMV and 511 Data

(a) Within Hour Distribution of DMV Crash Data

(b) Within Hour Distribution of 511 Crash Data
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100 km/h, they will cover these distances in about 45, 72, 72 and 180 seconds, respectively.

The number of crashes in bin i is scaled by the average of the segments of the same length

and distance from a DMS. This transformation is to ease the interpretation of regression

coefficients.

Speed data are obtained from INRIX, a private company specializing in traffic data

collection. These speed data are the result of probing GPS devices in smartphones and

vehicles instead of by fixed roadway censors. This allows for much more detailed, granular

measurements of relevant highway performance metrics for DOTs around the world. While

VDOT maintains similar data using traditional roadway censors, these are less comprehensive

relative to what INRIX data contains. A measurement from INRIX that is of interest to this

study is average vehicle speed on a road segment. Hourly speed aggregates across segments

of about 1 kilometer in length are extracted from INRIX’s tools and matched to each DMS

via road segments. The distribution of speed in kilometers per hour is displayed in Figure

A.5.

3.4 Analysis Sample Construction

The analysis sample is an unbalanced panel of 391 road segments with DMS by hour.

Summary statistics for key variables in the panel are displayed in Table 1. The average speed

is just under 100 kilometers per hour, which translates to about 62 miles per hour. DMS are

only turned on, or rather not blank, only about 42% of time throughout the sample. When

they are turned on, safety messaging is relatively rare. However, DMS appear to be using

multi-page messaging quite frequently – about 50% of the time.

Figure 3 displays the average hourly crash counts per kilometer according to both the

DMV and 511, which appear to be similar. In addition, all other non-crash events from 511

are also displayed. The average of about .001 indicates about 1 crash every 1000 hours per

kilometer, or 1.4 crashes per kilometer per month. To put this into perspective, Virginia has

about 1800 kilometers of Interstate highways, and reported about 25,000 crashes in 2019.
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Table 1: Summary Statistics

Mean St. Dev. Min Max

All Observations (N = 5,583,114)
Number of DMS 1.019 0.135 1 2
Stationary DMS 0.816 0.421 0 2
Portable DMS 0.203 0.407 0 2
Safety Campaign Day 0.164 0.370 0 1
Speed at Location 99.332 16.202 2 129
Number of DMS On 0.423 0.510 0 2
Saftey Message Displayed 0.026 0.160 0 2
Crash Message Displayed 0.020 0.141 0 2
Pages 0.633 0.825 0 6
Characters 16.796 22.329 0 156

DMS On (N = 2,318,449)
Saftey Message Displayed 0.063 0.243 0 2
Crash Message Displayed 0.048 0.215 0 2
Pages 1.525 0.529 1 6
Characters 40.447 15.622 1 156

Note: This table contains summary statistics for the analysis sample. Displayed
are the averages for all important variables, as well as averages of message char-
acteristics when DMS are turned on.
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Simple division yields about 1.16 crashes per kilometer across the entire state. Of course,

DMS are not randomly located, and they will likely appear in areas with more traffic. This

likely explains the 20% additional crashes compared to the overall state average.

Figure 3: Average Incidents per Kilometer by Distance from DMS

Note: This figure displays the average number of events per kilometer across distances from DMS according
to the DMV’s crash data, 511’s crash data, and all other 511 incidents.

4 Empirical Strategy

This study addresses two research questions about the impact of DMS in Virginia. First,

is safety messaging an effective means to improve traffic outcomes and reduce negative ex-

ternalities? Second, are specific message characteristics related to more crashes? An ideal

identification strategy to answer these questions would be random assignment of safety slo-

gans and features of messages to DMS. This sort of experiment, with perfect compliance,

19



would simplify teasing out the effect of messages on traffic outcomes. However, complete

randomization is not possible on such a large scale. Instead, it is important to identify com-

parable instances where DMS use is plausibly exogenous to unobservable factors affecting

traffic outcomes.

4.1 Safety Messaging

Like Hall and Madsen (2021), this study uses pre-scheduled, coordinated safety campaigns

to generate exogenous variation in DMS messages. Safety campaigns are scheduled months

in advance and coincide with events such as motorcycle awareness week or movie releases

rather than particularly safe (or dangerous) times for travel. In addition, VDOT mostly

deploys safety campaigns during off-peak hours, defined as the hours from 10:00 am up to

and including 2:00 pm. This generates a time period where safety messaging would be more

concentrated, even within campaign days. This is a slight deviation from the deployment of

safety campaigns in Hall and Madsen (2021), where safety messages were displayed relatively

uniformly across the entire campaign.

This study exploits within segment-month-weekday-hour variation in DMS usage to iso-

late the effects of safety messaging. Segment-month-weekday-hour fixed effects control for

idiosyncratic factors and general trends in traffic across different segments. These fixed effects

partial out differences in crash rates and average speeds due to peak travel times, weekends,

seasonality, visibility due to sunlight, and all other constant effects for each segment. Note

that each fixed effect cell contains an average of 9 observations. Individual federal holiday

fixed effects are also included to account for differences in commuting on those days. This

research design compares, for example, all observations for Mondays in June at 2:00 pm for

a specific segment to one another. The remaining variation is explained by combinations of

campaign days, off-peak hours, and an indicator variable for periods when a DMS is turned

on. Equation (1) specifies this identification strategy to explain variation in speed and crash

outcomes.
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Ys+k,t = αDMS Ons,t + β0Campaignt + β1(Campaignt x Off-Peakt)

+ β2(Campaignt x DMS Ons,t) + β3(Off-Peakt x DMS Ons,t) (1)

+ δ(Campaignt x Off-Peakt x DMS Ons,t) + µs,m(t),d(t),h(t) + τy(t) + ηholiday + εs+k,t

where Ys+k,t is one of the traffic outcomes analyzed k kilometers away from the DMS on

highway segment s in hour t. Recall from Section 3, while speed is measured at the location

of the DMS, crash and incident outcomes are analyzed in spatial bins downstream from the

DMS. If DMS indeed distract drivers, effect sizes should be inversely related to the distance

from the DMS. In other words, it would be surprising if an effect existed 5 to 10 kilometers

downstream from a DMS, which would be a few minutes of travel time after the person

passes the sign. The expectation is to observe a strong effect near the DMS that tapers off

with distance. As discussed in Section 3, the bins used are [−.2, 1), [1, 3), [3, 5), and [5, 10)

kilometers.

Standard errors of the coefficient estimates are clustered at the segment level to account

for possible correlation within segments. Another approach would be to cluster the standard

errors by which cell of a geographic grid they exist in. The area of the grid’s cells can be

made to be k kilometers, where k ∈ {1, 3, 5, 10}. This would allow for the errors of two

relatively close DMS to be correlated. The rationale behind clustering by grid cell would be

that a driver might be exposed to multiple DMS, thus linking a crash to multiple segments.

Clustering the standard errors by segment is used in presenting the results since this produced

slightly more conservative (i.e. larger) standard errors than clustering by grid cell. Still, the

results are qualitatively similar regardless of how the errors are clustered.

In Equation (1), α represents the overall effect of DMS on traffic outcomes. If α is

equal to zero, this would imply no difference in traffic outcomes between a DMS being

turned on or off. β0 represents the difference in outcomes during days with planned safety
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campaigns compared to all other days. There is no direct estimate of different message

impacts during off-peak hours due to this being colinear with the fixed effects. However,

both previous effects, DMS turned on and campaign days, are allowed to vary during off-

peak hours. These are captured by β2 and β3. µs,m(t),d(t),h(t), τy(t), and ηholiday represent

segment-month-weekday-hour, year, and holiday fixed effects.

δ represents the parameter of interest in this model specification. This parameter cap-

tures the effect of a DMS being turned on during off-peak hours of safety campaign days.

Campaigns are exogenous to traffic outcomes, since they are planned in advance and not

scheduled in anticipation of outcomes. If safety messaging causes negative outcomes, the

effect should be seen on these days. In addition, since the intensity of safety messaging is

concentrated during off-peak hours, any effect that exists should be magnified during these

hours. Since the model’s fixed effects and other variables remove the influence of time of

day, this increase in intensity can be thought of as exogenous as well. Lastly, the DMS must

be turned on for any of this to matter. If the observation occurs during an off-peak hour of

a campaign day, but the DMS is blank, there should be no impact. δ identifies the effect of

all three conditions (campaign day, off-peak hour, turned on DMS) being met at once.

Equation (1) makes assumptions about DMS operators’ level of compliance in displaying

safety slogans during campaigns. However, this assumption of perfect compliance can lead

to downward bias in estimates of the impact of DMS messages. In Virginia, not only are

safety messages occasionally not displayed during campaign periods, safety messages are

also sometimes displayed outside safety message campaign periods. There are instances

when DMS display safety slogans outside the window of scheduled campaigns. Figures A.7

and A.8 demonstrate differences in DMS use across campaign days and non-campaign days.

Rather than making the assumption of perfect compliance, a different identification strat-

egy can be used to tease out the effect of message types. Again, to avoid reverse causality

when traffic conditions cause message content displayed, this study assumes that whatever

message was displayed at the beginning of the hour was intended to persist throughout that
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hour. This makes it possible to compare hours beginning with a safety message to hours

beginning with other low priority messages. To get this comparison, crash and hazard mes-

sages are controlled for with an indicator variable. Equation (2) specifies this identification

of message type at the beginning of the hour.

Ys+k,t = αDMS Ons,t + δ(DMS On x Safety Msg)s,t + β1(DMS On x Crash Msg)s,t

+β2(DMS On x Hazard Msg)s,t + µs,m(t),d(t),h(t) + τy(t) + ηholiday + εs+k,t (2)

Here, α has the same interpretation as in Equation (1). However, δ represents the differ-

ence in outcomes for safety messages compared to default messages. Again, this comparison

is possible since β1 and β2 partial out the effect of higher priority messages.

As a final note about safety messages, a strength of this study is its ability to analyze

a representative menu of safety slogans rather than just one in particular. The fatality

message studied in Hall and Madsen (2021) is a single, specific type of safety slogan or

nudge. However, DOTs are likely to use a variety of safety slogans on DMS. Therefore, it

is important to evaluate the effects of a more comprehensive set of safety messages when

making policy recommendations.

4.2 Message Characteristics

Previous literature has examined the impact of message content on traffic outcomes. Of

course, this is important information for DOTs to know when deciding how to use their

DMS. However, the way DMS display messages, or how the messages are constructed, is also

an important feature. As an example, consider the particular DMS at mile marker 100 on

I-95N. The default for this DMS is to display travel time estimates. The default messages

for this sign are of the form

“Exit 126 / 26 Miles / t Min”
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and

“US 1 / Exit 126 // 26 Miles / t Min”

where t is the estimated travel time until Exit 126. In these quotes, a single slash represents

a new line, and two slashes represents a new page. This is depicted in Figures A.3a and A.3b.

For the specific segment where this sign is located, the crash rate for the multi page version

of the default is about 20% higher whereas the average difference in t, the estimated travel

time, is only about 30 seconds, which suggests little difference in overall traffic conditions.

Equation (3) below generalizes this idea by estimating differences in traffic outcomes for

single- and multi-page messages relative to when DMS are turned off.

Ys+k,t = αDMS Ons,t + δ(DMS Ons,t x Multi-Pages,t) + βChars,t

+µs,m(t),d(t),h(t) + τy(t) + ηholiday + εs,t

(3)

In this specification, α maintains a similar interpretation – the average difference in

outcomes between single-page messages compared to a DMS that is turned off. δ, the

parameter of interest, is the change in outcomes for multi-page messages relative to single

page.

5 Results

This section reports estimates of the parameters of interest for the three models described

above using coefficient plots. Full regression results can be found in the Appendix. Recall

the differences in the reported time of crashes in the two sources of crash data, DMV and

511, discussed above. Separate results for models using DMV crashes, 511 crashes, and other

511 incidents as dependent variables are presented first. The results for speed are presented

second.
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5.1 Safety Messaging and Crashes

Equation (1) identifies times when safety messaging would be, exogenously, more promi-

nent due to scheduled safety campaigns. While these are scheduled months in advance, and

usually revolve around events unrelated to traffic, there could still be some fundamental dif-

ferences in traffic patterns for these days. Luckily for this study, VDOT concentrates their

safety campaign efforts during off-peak hours (10:00 am - 2:00 pm), which allows the regres-

sion to control for the effect of both campaign days and off-peak hours on traffic outcomes.

In addition, this effect can only occur when DMS are turned on – otherwise no message

will be displayed. This generates a triple interaction term to identify the effect of safety

campaigns on traffic outcomes. This is captured by the parameter δ in Equation (1). 12

estimates of δ for each of the non-speed outcomes and their 95% confidence intervals are

displayed below in Figure 4.

Almost every parameter estimate on Figure 4 is positive albeit insignificant at the 5%

level. While the significance of these regressions do not correspond with Hall and Madsen

(2021), the general relationship between the coefficients and distance from DMS do. The

effect of safety campaigns appears to be largest closest to DMS and tapers off as distance

increases. The lack of significance for this result could be due to a few different factors. The

first is that the safety messages chosen by VDOT are relatively less salient than the ones

chosen by Texas’s Department of Transportation. If messages are less shocking or powerful,

the effect would therefore be smaller. A second reason could be due to the relative lack of

statistical power in comparison to Hall and Madsen (2021). The campaigns in Texas make

up a larger percentage of the overall sample in addition to the sample itself being larger.

Another important finding of these analyses is that DMS turned on increase the proba-

bility of crashes, although the effect is relatively constant across crash sources (see Tables

A.1, A.2, and A.3). In addition, this increase in not as large, or as consistently significant for

other incidents in the 511 dataset. VDOT considers both travel time estimates and blank

(off) messages to be valid defaults. However, these estimates would suggest the effect they
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Figure 4: Effect of Safety Campaigns on Traffic Outcomes

Note: This figure shows the coefficient estimates for δ in Equation (1). Standard errors are clustered at the
segment level and 95% confidence intervals are displayed as lines extending from the point estimates.
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have on traffic outcomes is not necessarily equivalent, with blanked signs having less risk.

To address the fact that perfect compliance is not guaranteed during safety campaigns,

Equation 2 captures the effect of displaying a safety message at the beginning of the hour.

The strategy of this equation is to partial out the effects of non-standard messaging, such

that hours beginning with safety messages can be compared to hours beginning with standard

messages. δ in Equation 2 represents the marginal increase in outcome for displaying a safety

message relative to a standard message. Figure 5 displays the coefficients for crashes and

incidents by distance from the DMS.

Figure 5: Effect of Safety Messaging on Traffic Outcomes

Note: This figure shows the coefficient estimates for δ in Equation (2). Standard errors are clustered at the
segment level and 95% confidence intervals are displayed as lines extending from the point estimates.

Like Figure 4, nearly all parameter estimates are once again insignificant, suggesting

little difference between safety messaging and standard messaging. In addition, the previous
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result that turned on DMS increase crash risk is no longer as pronounced. This suggests

that messages alerting drivers are associated with worse outcomes. While this could be due

to some form of measurement error in the data from the DMV, the evidence is also strong

in the 511 data.5

5.2 Safety Message Characteristics and Crashes

This study offers an alternate explanation for possible changes in crash risk around DMS.

Multi-page messaging has been shown in laboratory settings to distract drivers moreso than

static, single page messaging. Equation (3) estimates the effects of multi-page messaging, rel-

ative to single page, on traffic outcomes. Figure 6 displays the estimates and 95% confidence

intervals of δ from Equation (3).

Figure 6 displays large, positive and significant estimated effects for multi-page messag-

ing immediately near the DMS, which become insignificant after about 5 kilometers. This is

indicative of multi-page messaging being a large distraction relative to single page messag-

ing. Moreover, an important finding is that multi-page messaging appears to be relatively

unrelated with other incidents in the 511 database. This is an important falsification. This

suggests that multi-page messaging is not selectively used during poor traffic conditions, but

rather is generating additional crashes.

One thing to note is that the shape of the trend in coefficients over space in Figure 6 looks

very similar to the shape of the trend in coefficients in Figure 4. In addition, the probability

of observing multi-page messages is about 29% for off-peak hours during campaigns, which

is higher than all other times (20% in non-off-peak, non-campaign; 23% in non-off-peak,

campaign; and 21% in off-peak, non-campaign). Therefore, the consistently positive effect

could simply be attributed to multi-page messaging being more common during that time

period. More broadly, the result in Hall and Madsen (2021) might be combination of the

5The correlation between crashes over 10 kilometers in t and a crash message beginning hour t is 0.03. In
comparison, the correlation between crashes over 10 kilometers in t− 1 and a crash message beginning hour
t is 0.25.
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Figure 6: Effect of Multi-Page Messaging on Traffic Outcomes

Note: This figure shows the coefficient estimates for δ in Equation (3). Standard errors are clustered at the
segment level and 95% confidence intervals are displayed as lines extending from the point estimates.
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effects of a salient safety message and these messages being multiple pages.

5.3 Safety Messages and Speed

For each of the above model specifications, this study also analyzing the effects of DMS

messages on speed immediately around the DMS, a novel contribution to the literature.

Estimates for α and δ from each model are presented in Table 2. Each model demonstrates

a relatively constant, marginal reduction in speed when DMS are turned on at the beginning

of the hour relative to turned off. The magnitude of this estimate is small, although plausible.

Keep in mind, the coefficient estimate represents changes in the average speed of traffic over

the entire segment for an hour. A large reduction in speed would be a surprising result,

as most people will likely drive past the DMS without hindrance. However, if only a small

portion of drivers reduce speed or tap on their brakes, a reduction of this magnitude is not

unreasonable.

Table 2: Effect On Speed

Eq (1) Eq (2) Eq (3)

DMS On -1.075*** -0.665*** -1.121***
(0.127) (0.144) (0.291)

Campaignt x Off-Peakt x DMS Ons -0.009
(0.140)

DMS Ons,t x Safety Msgs,t 0.525***
(0.123)

DMS Ons,t x Multi-Pages,t -1.352***
(0.228)

Num. Obs. 5,583,114 5,583,114 5,583,114
R2 0.791 0.793 0.791

Note: This table presents the estimated coefficients in Equations (1), (2) and (3)
with speed as the outcome. Each regression contains segment-month-weekday-hour
fixed effects, year-month fixed effects, and holiday fixed effects. The standard errors
presented are clustered at the segment level. Standard errors can also be clustered
by grid cells of d-by-d kilometers (where d ∈ {1, 3, 5, 10}), but this does not make a
qualitative difference in the significance of the coefficients. * p < 0.1, ** p < 0.05,
*** p < 0.01

δ from Equation (1), or the impact of a DMS being turned on during off-peak hours
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of a campaign day, is estimated as insignificant. This suggests that there is no additional

effect on speed when safety messages are most intended to be shown. δ from Equation (2)

represents the effect of displaying a safety messages relative to standard messages. The

results suggest a positive effect on travel speed. It is not the case that drivers speed up

when a safety message is being displayed, but rather do not slow down as much as standard

messaging. This result could be explained by the fact that standard messaging contains some

amount of information. If a driver can quickly recognize that the message displayed does not

contain useful information, they may spend less time reading it. Finally, δ from Equation

(3) is estimated to be negative and significant. This result implies that drivers slow down

twice as much when shown messages with multiple pages relative to messages with single

pages. This results in a decrease in travel time of about 2%. Running this specification

with a log transformation of the speed variable results in coefficients of −0.017 and −0.024,

respectively. This suggests an average additional slowdown of about 2.4%, or a total effect

of about 4%.

6 Conclusion

Transportation departments across the world rely on Dynamic Message Signs to inform,

warn, and even nudge, drivers. Considering the widespread and pervasive use of DMS, little

empirical research has investigated the effectiveness and costs of DMS use, or the possibility

that they generate externalities. This paper contains three main findings regarding the

unintended consequences of updating drivers’ information via roadside DMS. First, results

indicate the presence of negative externalities when displaying information on DMS. Drivers

tend to slow down around DMS and experience a higher risk of a crash when DMS are

turned on. Second, this study finds little to no differences in traffic outcomes for DMS

displaying generic safety messages relative to default messages, such as estimates for travel

times. The current literature contains mixed evidence on the effect of safety messaging on
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traffic outcomes. This research identifies a solution explain this – multi-page messaging. The

third result uncovers large, significant increases in the risk of a crash as well as relatively

large reductions in speed due to multi-page messaging.

To put the results in perspective, the average number of crashes per kilometer per month

across segments with DMS is about 1.4. DMS are only turned on about 40% of the time

and display multi-page messages about 50% of the time they’re turned on. Multiplying these

percentages by the percent increase in crash risk of multi-page messages, yields a 9% increase

in crashes overall. If these multi-page messages were eliminated over the course of a month,

this could reduce the average crashes per kilometer per month from 1.4 to 1.3.

Across 391 highway segments and 32 months, this could have prevented about 1,250

crashes over 391 kilometers of highway. However, if the effect extends to 3 to 5 kilome-

ters beyond the DMS, as the results suggest, this would instead translate to about 5,000

unnecessary crashes caused by drivers distracted by multi-page messaging over the sample

period. In 2019, there were 128,000 crashes in Virginia. Results indicate 1,875 additional

crashes due to multi-page messaging, which is about 1.5% of all crashes over the year. Also

in 2019, .6% of crashes resulted in a fatality. Applying this number, 32 fatalities could have

been prevented over the same period. In short, multi-page messaging causes roughly one

additional fatality per month over the entire state.

According to the US Census Bureau, commuters in Virginia had an average commute

of 28.7 minutes per trip. Average hourly income was about $27.28. Therefore, the average

time commuting per trip is worth about $13.05. If a 2-4% slowdown applied to the entire

trip, this would equate to about $0.40 in costs per trip per person. Assuming 260 work

days, and therefore 520 commutes over the course of a year, a 2-4% slow down would cost

drivers about $200 each. This figure multiplied by the total 2019 employment in Virginia

(3.45 million) would result in $700 million dollars in lost time across all commuters over

the course of the year. This is about .12% of Virgina’s 2019 GDP. Of note, this calculation

makes the assumption of a 2-4% slow down due to multi-page messaging across an entire
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trip. While this is a rather heroic assumption, Bento et al. (2020) demonstrates how defining

willingness to pay for time savings as a fraction of one’s wage dramatically understates the

value placed on time savings by not accounting for discrete costs of being late.

Policy implications of these results suggest more careful, deliberate use of DMS. Broadly

speaking - a blank message should be adopted and more widely in place of uninformative

text. Blank signs, at least in Virginia, reflect no worthwhile information for drivers to be

aware of. Perhaps the bar for what is considered worthwhile needs to be raised in order to

reduce externalities. In addition, while there does not appear to be significantly harmful

effects of safety messaging, there is little evidence that it is instead helpful. Of course,

there are different levels of complexity across safety messages that might impact outcomes

differently.

Directions for future research in this area are plentiful. One step would link the results

in Hall and Madsen (2021) to those in Shealy et al. (2020). These two studies support

diametrically opposed DMS safety slogan policies, and a DOT that follows the wrong one

could experience important changes in traffic outcomes. Future work could also analyze

vehicle counts on parallel roads or exits conditional on DMS display messages to determine

the extent to which traffic diversion occurs. This would be a direct measure of time savings,

crash reductions, and how people adhere to advice. If the benefits of this outweigh the

now documented costs, policy recommendations can be clear. It should be noted, however,

that spillovers (or lack thereof) onto other routes could also have important implications for

highway wear and congestion on these other routes.
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A Appendix

A.1 Additional Figures

Figure A.1: Safety Campaign Schedule

Note: This figure displays a calendar view of VDOT’s safety campaigns. Circles represent weekdays (Mon-
day through Thursday) and the squares represent weekends (Friday, Saturday, Sunday). The darker colored
dots represent campaign days. The black dots are regular campaigns, red are holiday themed and blue are
popular culture themed.
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Figure A.2: Number of Characters and Average Pages

Note: This figure displays the distribution of the number of characters across the analysis sample. For each
number of characters, the average number of pages is calculated and plotted on top.

Figure A.3: Example of Single Page and Multi-Page Messages

EXIT 126
26 MILES

23 MINUTES
(a) Single Page Message

US 1 26 MILES
EXIT 126 23 MINUTES

(b) Two Page Message

Note: These figures represent an example of single- and multi-page messages on a single DMS on I-95N.
The DMS would occasionally switch between these two messages as its default. This highlight how DOTs
can display the same information but with different formats.

Figure A.4: Examples of Safety Slogans

DON’ T TWEET
FROM THE

DRIVER’ S SEAT
(a) one pager

IGNORE THE PHONE
THE ROAD
IS CALLING

(b) two pager

Note: This figure presents two standard safey messages that appear in Virginia during the sample period.
There are many unique messages, but these two are fairly representative of the lot.
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Figure A.5: Distribution of Speed

Note: This plot displays the relative frequency of speed across the sample. The bimodal nature of the
distribution has to do with differences in speed limits by about 5 kilometers per hour. Inrix computes these
averages, but also computes a “reference” speed. This measures the speed at which traffic could move during
free flow. The distribution of reference speed subtracted from the actual speed is unimodal with a long left
tail.
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Figure A.6: Message Timing

Note: This figure demonstrates the lag in DMS changing messages over the first few minutes of the hour.
In the first panel, safety messaging significantly increases from 10:00 am to 10:02 am, and then drops from
3:00 pm to 3:02 pm. This pattern is similar for the probability of observing a DMS turned on (third panel),
but not for crash and incident messages (second panel). To account for this, the message displayed at h:02
is used to identify the entire hour.
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Figure A.7: Caption

Note: This figure shows the probability of a DMS being turned on over the course of a day. The data are
split by whether the day falls into a campaign day. There is a small increase in the likelihood, about 2%,
of a DMS being turned on during campaign days compared to non-campaign days. However, this difference
substantially increases during the hours 10:00 am to 2:00 pm, when safety campaigns are most intense.

42



Figure A.8: Caption

Note: Similar to Figure A.7, this figure shows the probability of a DMS displaying a safety message over
the course of a day, conditional on the campaign status of the day. The data are displayed for both on and
off DMS, and then for only turned on DMS. As one would expect, there is a large increase in the probability
of a DMS displaying a safety message during safety campaign days relative to non-campaign days.
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A.2 Additional Tables

Table A.1: Effect of Safety Campaigns on Crashes (DMV)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

Campaign 0.041 -0.099*** -0.077* -0.045*
(0.054) (0.038) (0.044) (0.026)

DMS On 0.161*** 0.138*** 0.133*** 0.162***
(0.045) (0.038) (0.034) (0.031)

Campaign x Off-Peak -0.016 0.013 0.012 -0.074
(0.165) (0.099) (0.114) (0.089)

Campaign x DMS On -0.150 -0.017 0.000 -0.053
(0.092) (0.069) (0.073) (0.039)

Off-Peak x DMS On -0.132 0.047 0.062 0.018
(0.107) (0.077) (0.096) (0.063)

Campaign x Off-Peak x DMS On 0.156 0.083 0.030 0.117
(0.243) (0.148) (0.138) (0.121)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.113 0.115 0.115 0.121

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 1 with crashes according to the DMV as the outcome. Each column represents a distance

farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday fixed effects.
The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d kilometers (where
d ∈ {1, 3, 5, 10}) kilometers, but this does not make a qualitative difference in the significance of the coefficients.

Table A.2: Effect of Safety Campaigns on Crashes (511)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

Campaign -0.026 -0.057* -0.084** -0.025
(0.049) (0.033) (0.033) (0.025)

DMS On 0.192*** 0.175*** 0.194*** 0.172***
(0.042) (0.040) (0.037) (0.027)

Campaign x Off-Peak -0.077 0.062 -0.102 -0.053
(0.141) (0.111) (0.088) (0.069)

Campaign x DMS On -0.067 -0.046 0.025 -0.070
(0.092) (0.081) (0.063) (0.046)

Off-Peak x DMS On -0.099 -0.014 -0.043 -0.043
(0.084) (0.079) (0.071) (0.055)

Campaign x Off-Peak x DMS On 0.333 0.230 0.241 0.093
(0.217) (0.157) (0.154) (0.099)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.114 0.122 0.121 0.127

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 1 with crashes according to 511 as the outcome. Each column represents a distance farther

from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday fixed effects. The standard
errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d kilometers (where d ∈ {1, 3, 5, 10}), but
this does not make a qualitative difference in the significance of the coefficients.
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Table A.3: Effect of Safety Campaigns on Other Incidents (511)

Incidentst (-.2 - 1 km) Incidentst (1 - 3 km) Incidentst (3 - 5 km) Incidentst (5 - 10 km)

Campaign -0.005 -0.012 -0.014 -0.039*
(0.030) (0.026) (0.025) (0.020)

DMS On 0.027 0.058** 0.067* 0.074***
(0.030) (0.025) (0.040) (0.020)

Campaign x Off-Peak -0.090 0.220*** 0.024 -0.048
(0.083) (0.083) (0.046) (0.056)

Campaign x DMS On 0.004 0.010 0.033 0.048*
(0.064) (0.046) (0.033) (0.029)

Off-Peak x DMS On -0.093 0.037 0.026 -0.031
(0.085) (0.056) (0.043) (0.029)

Campaign x Off-Peak x DMS On 0.186 -0.197* 0.113 0.035
(0.158) (0.116) (0.077) (0.075)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.120 0.133 0.298 0.329

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 1 with non-crash incidents according to 511 as the outcome. Each column represents a distance

farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday fixed effects. The
standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d kilometers (where d ∈ {1, 3, 5, 10}),
but this does not make a qualitative difference in the significance of the coefficients.

Table A.4: Effect of Safety Messaging on Crashes (DMV)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

DMS On 0.004 0.015 0.033 0.070**
(0.045) (0.037) (0.032) (0.030)

DMS On x Safety Message 0.012 0.021 -0.005 -0.096**
(0.086) (0.064) (0.064) (0.045)

DMS On x Crash Message 1.329*** 1.472*** 1.401*** 1.140***
(0.238) (0.213) (0.159) (0.147)

DMS On x Hazard Message 0.399* 0.441*** 0.133 0.287***
(0.225) (0.162) (0.164) (0.109)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.113 0.115 0.115 0.122

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 2 with crashes according to the DMV as the outcome. Each column represents a

distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday
fixed effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d
kilometers (where d ∈ {1, 3, 5, 10}) kilometers, but this does not make a qualitative difference in the significance of the coefficients.
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Table A.5: Effect of Safety Messaging on Crashes (511)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

DMS On 0.070* 0.020 0.084** 0.064**
(0.037) (0.038) (0.035) (0.025)

DMS On x Safety Message -0.115 0.050 0.003 -0.115**
(0.081) (0.072) (0.074) (0.045)

DMS On x Crash Message 1.562*** 1.868*** 1.383*** 1.209***
(0.230) (0.187) (0.165) (0.147)

DMS On x Hazard Message -0.047 0.218 0.210 0.297**
(0.178) (0.144) (0.143) (0.121)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.114 0.122 0.122 0.127

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 2 with non-crash incidents according to 511 as the outcome. Each column represents

a distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday
fixed effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d
kilometers (where d ∈ {1, 3, 5, 10}), but this does not make a qualitative difference in the significance of the coefficients.

Table A.6: Effect of Safety Messaging on Other Incidents (511)

Incidentst (-.2 - 1 km) Incidentst (1 - 3 km) Incidentst (3 - 5 km) Incidentst (5 - 10 km)

DMS On 0.028 0.051** 0.064* 0.070***
(0.035) (0.025) (0.035) (0.019)

DMS On x Safety Message -0.146* -0.038 -0.004 -0.043*
(0.088) (0.061) (0.038) (0.022)

DMS On x Crash Message -0.005 0.001 0.129* 0.066
(0.098) (0.066) (0.078) (0.053)

DMS On x Hazard Message 0.149 0.459*** 0.272*** 0.185***
(0.139) (0.141) (0.084) (0.060)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.120 0.133 0.298 0.329

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 2 with non-crash incidents according to 511 as the outcome. Each column represents a

distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday fixed
effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d kilometers (where
d ∈ {1, 3, 5, 10}), but this does not make a qualitative difference in the significance of the coefficients.

Table A.7: Effect of Multi-Page Messaging on Crashes (DMV)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

DMS On 0.283*** 0.079 0.140* 0.084
(0.102) (0.070) (0.080) (0.060)

DMS On x Multi-Page 0.331*** 0.212** 0.139* -0.036
(0.101) (0.087) (0.074) (0.067)

DMS On x Char -0.009*** -0.002 -0.002 0.002
(0.003) (0.002) (0.002) (0.002)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.572 0.113 0.115 0.115

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 3 with crashes according to the DMV as the outcome. Each column represents

a distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and
holiday fixed effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of
d-by-d kilometers (where d ∈ {1, 3, 5, 10}) kilometers, but this does not make a qualitative difference in the significance of the coefficients.
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Table A.8: Effect of Multi-Page Messaging on Crashes (511)

Crashest (-.2 - 1 km) Crashest (1 - 3 km) Crashest (3 - 5 km) Crashest (5 - 10 km)

DMS On 0.386*** 0.286*** 0.217*** 0.192***
(0.101) (0.080) (0.070) (0.059)

DMS On x Multi-Page 0.288*** 0.362*** 0.116 0.107
(0.074) (0.098) (0.072) (0.071)

DMS On x Char -0.009*** -0.008*** -0.002 -0.002
(0.002) (0.002) (0.002) (0.002)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.121 0.114 0.122 0.121

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 3 with non-crash incidents according to 511 as the outcome. Each column

represents a distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed
effects, and holiday fixed effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered
by grids of d-by-d kilometers (where d ∈ {1, 3, 5, 10}), but this does not make a qualitative difference in the significance of the coefficients.

Table A.9: Effect of Multi-Page Messaging on Other Incidents (511)

Incidentst (-.2 - 1 km) Incidentst (1 - 3 km) Incidentst (3 - 5 km) Incidentst (5 - 10 km)

DMS On -0.028 -0.028 -0.086 -0.016
(0.077) (0.052) (0.066) (0.026)

DMS On x Multi-Page -0.109 -0.039 -0.129 -0.067
(0.085) (0.054) (0.117) (0.050)

DMS On x Char 0.003 0.003* 0.006 0.003**
(0.002) (0.002) (0.004) (0.001)

Num.Obs. 5,583,114 5,583,114 5,583,114 5,583,114
R2 0.127 0.120 0.133 0.298

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: This table presents the estimated coefficients in 3 with non-crash incidents according to 511 as the outcome. Each column represents

a distance farther from the DMS. Each regression contains segment-month-weekday-hour fixed effects, year-month fixed effects, and holiday
fixed effects. The standard errors presented are clustered at the segment level. Standard errors can also be clustered by grids of d-by-d
kilometers (where d ∈ {1, 3, 5, 10}), but this does not make a qualitative difference in the significance of the coefficients.
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